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GLUE LIKE ROLEOFTHE Λ-PARTICLEIN α-x-Λ CLUSTER 
STRUCTURE 
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Abstract 

Energy levels of the lambda- hypernucleiΛ
6He, Λ

7-8Li, Λ
9Be are predicted on the basis of the -x-Λ 

three-body model with x = n, d, tand , respectively. Rearrangement coupled-channels Gaussian 
basis treatment is used to solve the three-body system. Interactions between the constituent 
particles are determined so as to reproduce reasonably the observed low-energy properties of the 
-x nuclei (5He, 6-7Li, 8Be) and the existing data of Λ-binding energies of the x+Λ and +x+Λ 
systems ( Λ

3-4H, Λ
5He and Λ

6He,Λ
7-8Li, Λ

9Be). To solve resonance states with correct boundary 
condition we have used the proper treatment of the Complex Rotation method. In our calculation, 
Pauli forbidden states between x and α-clusters were excluded from the solution of Schrödinger 
equation by implementing the Orthogonality Condition Model (OCM). Structure change of the 
+x ordinary nuclei due to the participation of the Λ particle is found to be substantially large.  

Keywords:  Rearrangement coupled channel method, Complex rotation method, Orthogonality 
condition model. 

 

Introduction 

 In nuclear physics, as in almost all branches of physics, the description of resonance is 
one of the most important tasks. A resonance can be viewed and approached from two different 
angles; as a delay connected with an enhanced phased shift in a scattering process or as a long-
lived but decaying state of a compound system. The main observable characteristics of a 
resonance are the position and the level width. In the first picture they are to be determined from 
the phase shift (or cross section) as a function of energy. In the second picture the long-lived state 
is regarded as an extension of the concept of a bound state in that it is a solution to the 
Schrödinger equation with purely outgoing asymptotic belonging to complex energy. In our 
model, it is possible to determine the α-x and Λ-x interactions so as to reproduce all the existing 
binding of systems in an α-x-Λ three-body system. 

Interactions 

Interaction between Alpha and x Clusters 

We have employed the α-n(t) potentials, parity dependent form with the central and spin-
orbit terms, which is introduced by Kanada (Kanada H. et al., (1979)) and Furutani (Furutani H. 
et al., (1980)). The potential strengths and the range parameters are expressed in the following 
Gaussian form, 
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 where, xs


 is the 

spin of neutron(n) or triton(t).The parameters in Eq.(1) are listed in Table (1) and Table (2). The 
relative angular momentum between α and neutron (triton) is 1 for ground state. The spin of 

neutron (triton), ns


( ts


) is 1/2. Therefore, the total angular momenta for ground state and first 

excited state for5He(7Li) are 3/2- and 1/2- respectively. 

The α-d was also introduced by Furutani (Furutani H. et al., (1980)) as follows;  

   
dd s.

2826.1/re0.8
2236.2/re74.42 = )r(V





  for all .             (2) 

where is  the relative angular momentum between α andd, and ds


 is the spin of deuteron. The 

relative angular momenta between alpha and deuteron )( are 0 for ground state and 2 for 3+, 2+, 

1+ excited states. Since the spin of deuteron ( ds


) is 1,  the angular momenta and parity for α-d 

system are 1+ for ground state and 3+, 2+, 1+ for three excited states. We have calculated the spin 

orbit s.





 coupling effect as   .2/sjs. 222  





 

The size parameters of interaction are in fm-2and strengths are in MeV. 

Table (1) The parameters of α-N interaction.  Table(2) The parameters of α-t interaction. 

 

 

 

 

 

 

 

 

 

The α-α potential is also given in Gaussian form as follows;  

   
      .

2738.1/re4.299
2898.1/re9.395

20.3/re742.1)r(V 
 

 
(3) 

These potentials reproduce reasonably well the low-lying states and low-energy scattering phase 
shifts of the α-x systems.We have also employed the OCM-based cluster model study of light 
nuclei (Hasegawa A. et al., (1971)). 

Lambda- x Potential 

 In our calculations, we use the effective lambda-neutron Nijmegen model potential of 
Akaishi (Akaishi Y. (2007)). It is derived from realistic one-boson-exchange YN potential of 
Nijmegen model D (Nagels. M.M. et al.,(1977)). The original Nijmegen potential is simulated by 

i 1 2 3 

βi 0.0913 0.1644 0.2009 

βi
p 0.0913 0.1644 0.2009 

γi 0.28 - - 

γi
p 0.28 - - 

Vi 6.9 -43.35 -51.7 

Vi 
p 6.9 43.35 -51.7 

Vi 
ls -1.2 - - 

Vi 
ls,p 1.2 - - 

 

i 1 2 3 
βi 0.36 0.90 - 
 βi

p 0.20 0.53 2.5 
γi 0.396 0.52 2.2 
γi

p 0.396 2.2 - 
Vi -96.3 77.0 - 
Vi 

p 34.0 -85.0 51.0 
Vi 

ls -20.0 -16.8 20.0 
Vi 

ls,p 6.0 -6.0 - 
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Shinmura so as to reproduce the phase shift parameters as the original Nijmegen potential. Then, 
the effective Y-N potential is derived by the Brueckner Theory. It is parameterized into five-
range Gaussian form and parameters for Λ-n singlet even and triplet even state potentials are 
given in Table (3). 

𝑉ஃି௡
௦,௧ (𝑟) = ∑ 𝑉௞

௦,௧𝑒
ି(

ೝ

ഋೖ
)మହ

௞ୀଵ    (4) 

where s, t stand for singlet and triplet state, respectively.  

Table 3  Strength parameters for Λ-n interaction 

μk (fm) Vk
s (MeV) Vk

t(MeV) 
0.1800000 47.99645 -46.25826 
0.3286335 -272.7777 -43.8389 
0.6000000 679.7185 493.1045 
1.095445 -160.1574 -136.9770 
2.000000 -2.74696 -0.5687829 

 

 The phenomenological Λ-d potential was also constructed by adjusting the parameters to fit 
the value BΛ=(0.130.05) MeV (Bertini R. et al., (1979)).For the Λ-t interaction in Λ

4H system, 
we have applied isle type potential which is derived from Dalitz hard core ΛN interaction (Dalitz 
R.H. et al., (1972)). 

Among the various Λ-α potentials, we discuss the potential which is introduced by Myint, 
Shinmura and Akaishi (Akaishi Y. et al., (2003)) which we will call it MSA Λ-α potential. The 
required Λ-α potential which based on this effective Λ-N potential is constructed by Hartree-
Fock method. It is slightly modified so as to reproduce the experimental binding energy of the 

Λ
5He hypernucleus. Lambda-x interactions are expressed in the following Gaussian form; 

𝑉Λି௫(𝑟) = ∑ 𝑉୩𝑒
ି(

ೝ

ഋೖ
)మ

.ଷ
௞ୀଵ      (5) 

The parameters in Eq.(5) are listed in Table (4). 

Table 4 The range parameters of Λ-x interactions are in fm and strengths are in MeV. 
(x=d,t and α) 

System V1 V2 V3 μ1 μ2 μ3 

Λ-d 181.70 -103.40 -30.84 1.08 1.32 1.78 

Λ-t  359.2 -324.9 - 1.25 1.41 - 

Λ-α 91.0 -95.0 - 1.30 1.70 - 

 

Pauli Suppression Effect in Three-Body System 

The Pauli principle between nucleons belonging to α and x clusters is taken into account 
by the Orthogonality Condition Model; OCM (Saito S., (1969)).The OCM projection operator 
Vpauli is represented by 



194               J. Myanmar Acad. Arts Sci. 2020 Vol. XVIII.No.2A 

.)()(lim rrV ff
f
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

 
                                     (6) 

which rules out the amplitude of the Pauli forbidden α-x relative states from ϕ୤(r஑୶) the two-
body total wave function. The forbidden states are f={0S} for n(p), f={0S, 0P}for d,  f = {0S, 1S, 
0P, 0D} for t (3He) and f = {0S, 1S, 0D} for α. In the calculation, the strength λ forVpauli is taken 
to be 105 MeV, which is large enough to push up away the unphysical forbidden states into the 
very high energy region while keeping the physical states unchanged. Harmonic oscillator wave 
functions are applied for forbidden states. 

Complex Coordinate Rotation Method 

 We use the method of complex coordinate rotation (Gyarmati B. and Kruppa A.T., 
(1985))to investigate the resonance states. According to the complex rotation method,the 

following coordinate transformation  ierr   is carried out, whereθ is a real number called 

rotation angle.Under this transformation, wave function is defined as 

).r()(Û)r()re()r( i  


   (7) 

Schrödinger Equation under complex rotation is, 

).r(E)r()r(H         (8) 

Then the asymptotic resonance wave function in Gaussian basis expansion is transformed as 
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Schrödinger Equation becomes        
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We have to solve the Schrödinger equation which is the same as bound state system except the 
range parameter bj becomes bje

iθ. 

Three-Body Schrödinger Equation 

Then Schrödinger equation becomes 
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where c is the channel, c=1, 2 and 3which are described in Fig.1. 

The total wave function with angular momentum J and Z component M,ΨJ,M may be expanded in 
terms of basis functions spanned over the threeRearrangement coupled-channels Gaussian basis 
treatment (Kamimura M. (1988)) as follows; 

 

Here lc (Lc) stands for the angular momentum of the relative motion associated with the 

    JMcLclc
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coordinate rc (Rc), and the bracketൣ𝑌௟೎(𝑟௖ෝ)𝑌௅೎(𝑅෠௖)൧௃ெ JM represents the vector coupling of the 

two spherical harmonics.  

In Eq. (12),lc and Lc are restricted as ,0 max
cc   ,ccc lJLlJ  and    JLcc 11 l  

.The numbers ic and Ic specify the radial dependences of 
)r( c

)c(
Ii cc


and 

)R( c
)c(
Ll cc


, respectively. 

The form of the radial functions and  is taken as  

                                    ,     )n1i(,abb )1i(
1i  

, 

                                                                  ,      ).N1I(,ABB )1I(
1I    

These basis functions have been verified to be suited for describing both short-range correlations 
and long-range tail behaviorsof few-body systems. The eigen energy E and the coefficients D in 
Eq.(12) are to be determined by the variational method. 

 

 

 

 

 

 

Channel (1)                              Channel (2)                           Channel (3) 

Figure 1  Three rearrangement channels of the α-x-Λ system and their Jacobian coordinate 

Relative Density Distribution and Root Mean Square Distance 

The relative density distribution )r( c  is obtained by integrating over the other Jacobian 

coordinate cR


and the angular part of cr


 as follows; 

cc
2

c r̂dRd)r(


 
 

where  is the total wave functionof three-body. 

The root mean square distances corresponding to the above density distributions are defined as  
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Results and Discussions 

Resonance states of x- α cluster 

Studies of resonances are indispensable for understanding the unique properties of drip-
line nuclei. We have performed the α+n, α+d, α+t and α+α two- body calculation for 5He, 6-7Li, 
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and 8Be. The positions of resonance states in the complex energy plane remains almost 
unchanged with the variation of rotation angle θ. Pauli operator is applied to push out the 
forbidden states between α-x clusters. The results and discussion are summarized as follows; 

1) The 5He system has been investigated as the typical example of the α-n model. The energies 
and level widths of these systems we obtained are in good agreement with the experimental 
values (Tilley D.R. et al., (2002)) 

2) The excited states of 6-7Li have been calculated as resonance states of the α-d and α-t system. 
All our calculated results are in good agreement with the experimental values except for the 
excited 2+ resonance state of 6Li, which lies about 0.735 MeV above the  experimental one 
(2.836±0.022 MeV). Since there are two 2+ resonance states with different isospin (I=0 and 
I=1). Our interaction is independent of isospin and it is not suitable to treat isospin dependent 
resonance states.  

3) The energies and level widths of 8Be have been investigated with α-α model. The obtained 
binding energies agree with the experimental values within the experimental error (Tilley 
D.R. et al., (2004)).Therefore to summarize our results, almost all the bound states and 
excited resonance states we examined are well reproduced by this α-x cluster model with 
complex rotation method. 

 

Table 5  The energy eigen values of 5He, 6Li, 7Li and 8Be systems 

 

 

 

 

 

 

 

 

 

 

 
 

Total Binding Energies and Lambda Binding Energy ofα-x-Λ cluster 

The binding energies of single lambda hypernuclei with α-x-Λ cluster structures have 
been studied within the coupled-rearrangement channel Gaussian basis treatment. In order to 
understand the role of Λ particle attached to the ordinary nuclei, it is useful to compare the 
obtained energy level structures of the α-x-Λ hypernuclei with those of α-x nuclei. The 
calculated binding energies in two-body and three-body are described in Table (5). Then we can 
see clearly how the ground and excited states of α-x nuclei are changed due to the participation 

States 
Energy Level, E (MeV) Level Width, Г(MeV) 

Our 
Results 

Exp: Results (Tilley 
D.R. et al., (2002)) 

Our  
Results 

Exp: Results (Tilley 
D.R. et al., (2002)) 

5He(3/2-) 0.89 0.886±0.008 0.596 0.648±0.006 
5He(1/2-) 2.15 2.068±0.021 5.009 5.570±0.056 

6Li(1+) g.s -1.470 -1.474 0 stable 
6Li(3+) 0.703 0.712±0.002 0.024 0.024±0.002 
6Li(2+) 3.571 2.836±0.022 1.514 1.300±0.100 
6Li(1+) 4.266 4.176±0.050 3.792 1.500±0.200 

7Li(3/2-) -2.460 -2.467 0 stable 
7Li(1/2-) -2.065 -1.989±0.003 0.004 eV 0.219±0.006eV 
7Li(7/2-) 2.452 2.185±0.011 0.126 0.069±0.003 
7Li(5/2-) 3.357 4.137±0.207 0.400 0.918±0.046 
8Be(0+) 0.085 0.091 0.040 0.005±0.25eV 
8Be(2+) 3.148 3.121±0.010 1.686 1.513±0.002 
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of Λ-particle. One sees clearly that injection of Λ-particle leads to stronger binding of the whole 
system. 

Table 6 The total binding energies in two-body and three-body and lambda binding 
energies; BΛ 

System 
B.E (MeV) 

(α-x)Two-body 
B.E (MeV) 
Three-body 

BΛ(Cal.) 

(MeV) 
BΛ(Exp.) 

(MeV) 
Λ

6He(α-n-Λ) -0.89 3.29 4.18 4.18±0.10 
Λ

7Li(α-d-Λ) 1.47 7.31 5.84 5.58±0.03 
Λ

8Li(α-t-Λ) 2.50 9.32 6.82 6.80±0.03 
Λ

9Be(α- α -Λ) -0.09 6.64 6.73 6.71±0.03 
Structural change of the α-x nucleus 

It is interesting to look at the structural change of the (α-x) ordinary nucleus which 
occurs due to the participation of Λ-particle. In order to see shrinkage effect in (α-x-Λ) 

system, we have calculated the two physical properties; the density distribution )r( x  

and r.m.s distance between α and x, xr~  .Calculated r.m.s distances betweenα and x, 

xr~  in ordinary nuclei and single Λ-hypernuclei are listed in Table (6). The r.m.s 

distances of 5He and 8Be ( nr~  and r
~

) are not calculated since they are resonant states. 

For 6Li→Λ
7Li case, r.m.s distance dr~  changes as 4.10 fm to 3.44 fm. Participation of the 

Λ-particle gives rise to about 19% reduction of dr~  in three-body system.The r.m.s 

distance between alpha and triton tr~  reduces from 3.7fm (7Li) to 3.3fm (Λ
8Li). It isdue to 

the glue like role of the attached –particle. 

Table 7 Calculated r.m.s distances between α and x(x= n, d, t, α); xr~  (fm) in 
ordinary nuclei (two-body) and single Λ-hypernuclei (three-body). 

 

 

 

 

 

Summary 

In this paper, we have investigated the structural change of the α-xordinary nucleus by 
the participation of the Λ-particle.  We have carried out structure calculations of Λ

6He, Λ
7-8Li, 

Λ
9Be within the frame work of α-x-Λ cluster model (x= n, d, t, α).  The three-body calculations 

of the system were performed by using the Jacobian-coordinate Gaussian basis coupled-
rearrangement-channel method. The Pauli forbidden states between  and x particles have been 
excluded from the solution of Schrödinger equation with OCM model. In our calculation, the 
optimum set of parameters are b1= B1=0.1 fm and a=A=1.996. Calculated lambda binding 
energies of Λ

6He, Λ
7-8Li, Λ

9Be are in good agreement with the experimental values and injection 

System )fm(r~ x
 (two-body) 

)fm(r~ x
 (three-body) 

Shrinkage 
(%) 

Λ
6He(α-n-Λ) - 5.79 - 

Λ
7Li(α-d-Λ) 4.10 3.44 19 

Λ
8Li(α-t-Λ) 3.70 3.30 12 

Λ
9Be(α- α -Λ) - 3.78 - 
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of -particle leads to stronger binding of the whole system. Dynamical change of the α-x 
ordinary nucleus by the participation of the Λ-particle is seen in Λ-hypernucleus; there occurs 
19% shrinkage of the α-d and 12% shrinkage of the α-t distance compared with the distance in 
ordinary nucleus. Therefore we conclude that glue like role of the Λ-particle is important to 
study the Λ-Hypernuclei. 

Acknowledgement 

The authors greatly acknowledge Professor Y. Akaishi, RIKEN Nishina Center, Saitama, Japan for his 
valuable discussion and advice. 

 

References 

Akaishi Y.,Private communication. 

Bertini R. et al.,(1979). Phys. Lett. B83 306. 

Dalitz R. H. et al.,(1972).Nucl. Phys. B47 109.  

Furutani H. et al.,(1980).Prog. Theor. Phys. Suppl. 68 193. 

Gyarmati B. and KruppaA.T., (1985).Phys. Rev. C34 1. 

Hasegawa A. and NagataS., (1971).Prog. Theor. Phys. 45 1786. 

KanadaH. et al.,(1979).Prog. Theor. Phys. 61 1327.  

Kamimura M.,(1988).  Phys. Rev. A 38621. 

Myint K.S., Shinmura S. and Akaishi Y., (2003).Eur. Phys. J. A 16 21.  

NagelsM.M., RijkenT.A. and de SwartJ.J.,(1977). Phys. Rev. D 15 2547. 

SaitoS., (1969).Prog. Theor. Phys. 41705. 

Tilley D.R. et al.,(2002).Nucl. Phys. A708 3. 

Tilley D.R. et al., (2004).Nucl. Phys. A745 155.  

 

 


